Фильтрация, регрессия, работа с массивом и сериейDelphi , Синтаксис , МассивыФильтрация, регрессия, работа с массивом и серией
Автор: Lookin { **** UBPFD *********** by delphibase.endimus.com **** >> Фильтрация, регрессия, работа с массивом и серией Модуль предназначен для выполнения процедур: - фильтрации - регрессии - операций с массивами - операций с сериями Зависимости: Math, TeEngine, Graphics, SysUtils, Dialogs Автор: lookin, lookin@mail.ru, Екатеринбург Copyright: lookin Дата: 30 апреля 2002 г. ***************************************************** } unit FilterRegressionArraySeries; interface uses Math, TeEngine, Graphics, SysUtils, Dialogs; type TIntegerArray = array of integer; type TExIntegerArray = array of TIntegerArray; type TDoubleArray = array of double; type TExDoubleArray = array of TDoubleArray; type TStringArray = array of string; type TExStringArray = array of TStringArray; procedure ArrayExpanding(var ValueArray: TDoubleArray; ExpandCoef: integer); procedure ArrayLengthening(var ValueArray: TDoubleArray; SplitValue: integer); procedure ArrayShortening(var ValueArray: TDoubleArray; SplitValue: integer); procedure CubicSplineSmoothing(var ValueArray: TDoubleArray; Dsc: double; Coef: integer); procedure SevenPointNonLinearSmoothing(var ValueArray: TDoubleArray; Dsc: double; Coef: integer); procedure FourierAnalysis(var ValueArray: TDoubleArray; NumGarmonics: integer); procedure DoArraySmoothing(var ValueArray: TDoubleArray; FilterType: integer; Dsc: double; SplitCoef, ExpandCoef: integer; CycledFilter: boolean); procedure LinearRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string); procedure HyperbolicRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string); procedure PowerRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string); procedure PolynomialRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; PolyDegree: integer; var ArrayCoefs: TDoubleArray; SeriesColor: TColor; var Hint: string); procedure ExponentRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string; Warning: boolean); procedure ExponentialRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string; Warning: boolean); procedure ExpPowerRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string; Warning: boolean); procedure CheckArrayBounds(var CArray: TDoubleArray; var FromPoint, ToPoint: integer); procedure CheckSeriesBounds(CSeries: TChartSeries; var FromPoint, ToPoint: integer); procedure ArrayFromArray(var SourceArray, DestArray: TDoubleArray; FromPoint, ToPoint, Discrete: integer; Derivative: boolean); procedure ArrayFromSeries(var ValueArray: TDoubleArray; DataSeries: TChartSeries; FromPoint, ToPoint, Discrete: integer; Derivative: boolean); procedure SeriesFromArray(var ValueArray: TDoubleArray; DataSeries: TChartSeries; FromPoint, ToPoint, Discrete: integer; Derivative: boolean); function DerivFromArray(var SourceArray: TDoubleArray; FromPoint, ToPoint, Discrete: integer; Extremum: string; var Position: integer): double; function DerivFromSeries(DataSeries: TChartSeries; FromPoint, ToPoint, Discrete: integer; Extremum: string; var Position: integer): double; function ValueFromSeries(DataSeries: TChartSeries; FromPoint, ToPoint: integer; Extremum: string; var Position: integer): double; function ValueFromArray(var SourceArray: TDoubleArray; FromPoint, ToPoint: integer; Extremum: string; var Position: integer): double; function CalculateAreaOfArray(var SourceArray: TDoubleArray; FromPoint, ToPoint, Method: integer; BindToZero: boolean): double; function CalculateAreaOfSeries(DataSeries: TChartSeries; FromPoint, ToPoint, Method: integer; BindToZero: boolean): double; procedure LinearTrendExclusion(var ValueArray: TDoubleArray); procedure ColorizeSeries(DataSeries: TChartSeries; NewColor: TColor); procedure SetXInterval(DataSeries: TChartSeries; XInterval: double); procedure SetSeriesAxis(DataSeries: TChartSeries; NewAxis: TVertAxis); var rv, rsmooth, smootha: TDoubleArray; implementation //Нелинейный фильтр по 7 точкам procedure SevenPointNonLinearSmoothing(var ValueArray: TDoubleArray; Dsc: double; Coef: integer); var j, k, i: integer; resv: array of array of double; begin if (Coef = 0) or (Coef = 1) then Exit; SetLength(resv, Coef, (Length(ValueArray) div Coef)); for j := 0 to Coef - 1 do for i := 0 to Length(resv[0]) - 1 do resv[j][i] := ValueArray[i * Coef + j]; for k := 0 to Coef - 1 do for j := 0 to Length(resv[0]) - 1 do begin if j = 0 then resv[k][j] := (39 * ValueArray[j * Coef + k] + 8 * ValueArray[(j + 1) * Coef + k] - 4 * (ValueArray[(j + 2) * Coef + k] + ValueArray[(j + 3) * Coef + k] - ValueArray[(j + 4) * Coef + k]) + ValueArray[(j + 5) * Coef + k] - 2 * ValueArray[(j + 6) * Coef + k]) / 42; if j = 1 then resv[k][j] := (8 * ValueArray[j * Coef + k] + 19 * ValueArray[(j + 1) * Coef + k] + 16 * ValueArray[(j + 2) * Coef + k] + 6 * ValueArray[(j + 3) * Coef + k] - 4 * ValueArray[(j + 4) * Coef + k] - 7 * ValueArray[(j + 5) * Coef + k] + 4 * ValueArray[(j + 6) * Coef + k]) / 42; if j = 2 then resv[k][j] := (-4 * ValueArray[j * Coef + k] + 16 * ValueArray[(j + 1) * Coef + k] + 19 * ValueArray[(j + 2) * Coef + k] + 12 * ValueArray[(j + 3) * Coef + k] + 2 * ValueArray[(j + 4) * Coef + k] - 4 * ValueArray[(j + 5) * Coef + k] + ValueArray[(j + 6) * Coef + k]) / 42; if (j > 2) and (j < Length(resv[0]) - 3) then resv[k][j] := (7 * ValueArray[j * Coef + k] + 6 * (ValueArray[(j - 1) * Coef + k] + ValueArray[(j + 1) * Coef + k]) + 3 * (ValueArray[(j - 2) * Coef + k] + ValueArray[(j + 2) * Coef + k]) - 2 * (ValueArray[(j - 3) * Coef + k] + ValueArray[(j + 3) * Coef + k])) / 21; if j = Length(resv[0]) - 3 then resv[k][j] := (-4 * ValueArray[j * Coef + k] + 16 * ValueArray[(j - 1) * Coef + k] + 19 * ValueArray[(j - 2) * Coef + k] + 12 * ValueArray[(j - 3) * Coef + k] + 2 * ValueArray[(j - 4) * Coef + k] - 4 * ValueArray[(j - 5) * Coef + k] + ValueArray[(j - 6) * Coef + k]) / 42; if j = Length(resv[0]) - 2 then resv[k][j] := (8 * ValueArray[j * Coef + k] + 19 * ValueArray[(j - 1) * Coef + k] + 16 * ValueArray[(j - 2) * Coef + k] + 6 * ValueArray[(j - 3) * Coef + k] - 4 * ValueArray[(j - 4) * Coef + k] - 7 * ValueArray[(j - 5) * Coef + k] + 4 * ValueArray[(j - 6) * Coef + k]) / 42; if j = Length(resv[0]) - 1 then resv[k][j] := (39 * ValueArray[j * Coef + k] + 8 * ValueArray[(j - 1) * Coef + k] - 4 * ValueArray[(j - 2) * Coef + k] - 4 * ValueArray[(j - 3) * Coef + k] - 4 * ValueArray[(j - 4) * Coef + k] + ValueArray[(j - 5) * Coef + k] - 2 * ValueArray[(j - 6) * Coef + k]) / 42; end; for j := Coef to Length(resv[0]) - Coef do for k := 0 to Coef - 1 do ValueArray[j * Coef + k] := resv[k][j]; end; //Фильтр с кубическими сплайнами procedure CubicSplineSmoothing(var ValueArray: TDoubleArray; Dsc: double; Coef: integer); var j, k, i, N: integer; vresv, resv: array of array of double; maxv: array of double; av, h, mi, mj, v1, v2: double; begin if (Coef = 0) or (Coef = 1) then Exit; N := Length(ValueArray); SetLength(resv, Coef, N); h := Coef * Dsc; for k := 0 to Coef - 1 do for j := 0 to (N div Coef) - 2 do begin if j = 0 then begin mi := (4 * ValueArray[(j + 1) * Coef + k] - ValueArray[(j + 2) * Coef + k] - 3 * ValueArray[j * Coef + k]) / 2; mj := (ValueArray[(j + 2) * Coef + k] - ValueArray[j * Coef + k]) / 2; end; if j = (N div Coef) - 2 then begin mi := (ValueArray[(j + 1) * Coef + k] - ValueArray[(j - 1) * Coef + k]) / 2; mj := (3 * ValueArray[(j + 1) * Coef + k] + ValueArray[(j - 1) * Coef + k] - 4 * ValueArray[j * Coef + k]) / 2; end; if (j > 0) and (j < ((N div Coef) - 2)) then begin mi := (ValueArray[(j + 1) * Coef + k] - ValueArray[(j - 1) * Coef + k]) / 2; mj := (ValueArray[(j + 2) * Coef + k] - ValueArray[j * Coef + k]) / 2; end; for i := j * Coef to (j + 1) * Coef do begin v1 := ((j + 1) * Coef + k) * Dsc - (i + k) * Dsc; v2 := (i + k) * Dsc - (j * Coef + k) * Dsc; resv[k][i + k] := (Sqr(v1) * (2 * v2 + h) * ValueArray[j * Coef + k] + Sqr(v2) * (2 * v1 + h) * ValueArray[(j + 1) * Coef + k] + (Sqr(v1) * v2 * mi + Sqr(v2) * (-v1) * mj) / 2) / h / h / h; end; end; for j := Coef to N - 1 - Coef do begin av := 0; for k := 0 to Coef - 1 do av := av + resv[k][j]; av := av / Coef; ValueArray[j] := av; end; end; //Гармонический синтез Фурье procedure FourierAnalysis(var ValueArray: TDoubleArray; NumGarmonics: integer); var i, j, N: integer; yn, ap, bp: double; AFCoef, BFCoef: TDoubleArray; begin N := Length(ValueArray); SetLength(AFCoef, NumGarmonics); SetLength(BFCoef, NumGarmonics); AFCoef[0] := Sum(ValueArray) / N; BFCoef[0] := 0; for i := 1 to NumGarmonics - 1 do begin AFCoef[i] := 0; BFCoef[i] := 0; for j := 0 to N - 1 do begin AFCoef[i] := AFCoef[i] + ValueArray[j] * cos(Pi * i * j * 2 / N); BFCoef[i] := BFCoef[i] + ValueArray[j] * sin(Pi * i * j * 2 / N); end; AFCoef[i] := AFCoef[i] * 2 / N; BFCoef[i] := BFCoef[i] * 2 / N; end; for j := 0 to N - 1 do begin yn := 0; ap := 0; bp := 0; for i := 1 to NumGarmonics - 1 do begin ap := ap + AFCoef[i] * cos(2 * Pi * i * (j / N)); bp := bp + BFCoef[i] * sin(2 * Pi * i * (j / N)); end; yn := AFCoef[0] + ap + bp; ValueArray[j] := yn; end; end; //Общая процедура вызова нужного фильтра procedure DoArraySmoothing(var ValueArray: TDoubleArray; FilterType: integer; Dsc: double; SplitCoef, ExpandCoef: integer; CycledFilter: boolean); var j: integer; begin smoothA := nil; rsmooth := ValueArray; ArrayExpanding(rsmooth, ExpandCoef); ArrayLengthening(smoothA, SplitCoef); if FilterType = 1 then if CycledFilter then for j := 2 to SplitCoef do SevenPointNonLinearSmoothing(smoothA, Dsc, j) else SevenPointNonLinearSmoothing(smoothA, Dsc, SplitCoef); if FilterType = 2 then CubicSplineSmoothing(smoothA, Dsc, SplitCoef); ArrayShortening(smoothA, SplitCoef); ValueArray := smoothA; end; //Расширение массива заданным числом точек справа и слева procedure ArrayLengthening(var ValueArray: TDoubleArray; SplitValue: integer); var sv, N, i: integer; bv, ev: double; begin N := Length(ValueArray); sv := 10 * SplitValue; bv := 0; ev := 0; for i := 0 to 9 do bv := bv + ValueArray[i]; bv := bv / 10; for i := N - 1 downto N - 10 do ev := ev + ValueArray[i]; ev := ev / 10; SetLength(ValueArray, N + sv); for i := N - 1 downto 0 do ValueArray[i + trunc(sv / 2)] := ValueArray[i]; for i := trunc(sv / 2) - 1 downto 0 do ValueArray[i] := bv; for i := N + trunc(sv / 2) to N + sv - 1 do ValueArray[i] := ev; end; //Сокращение массива заданным числом точек справа и слева procedure ArrayShortening(var ValueArray: TDoubleArray; SplitValue: integer); var sv, N, i: integer; begin N := Length(ValueArray); sv := 10 * SplitValue; for i := 0 to N - sv - 1 do ValueArray[i] := ValueArray[i + trunc(sv / 2)]; SetLength(ValueArray, N - sv); end; //Расширение массива заданным числом точек между 2-мя соседними procedure ArrayExpanding(var ValueArray: TDoubleArray; ExpandCoef: integer); var i, k, N, sub: integer; diap: double; begin N := Length(ValueArray); sub := ExpandCoef - 1; SetLength(smoothA, N * ExpandCoef - sub); for i := 0 to N - 1 do begin smoothA[i * ExpandCoef] := ValueArray[i]; if i <> 0 then begin diap := (smoothA[i * ExpandCoef] - smoothA[(i - 1) * ExpandCoef]); for k := 0 to ExpandCoef - 1 do smoothA[(i - 1) * ExpandCoef + k] := smoothA[(i - 1) * ExpandCoef] + diap * (k / ExpandCoef); end; end; end; //Линейная регрессия procedure LinearRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string); var b0, b1, xsum, ysum, pxy, xsqua: double; y, x: array of double; i, N: integer; s: string; begin if ValueArray <> nil then N := Length(ValueArray) else N := SourceSeries.XValues.Count; pxy := 0; xsqua := 0; SetLength(x, N); SetLength(y, N); for i := 0 to N - 1 do begin if ValueArray <> nil then begin y[i] := ValueArray[i]; x[i] := ArgumentArray[i]; end else begin y[i] := SourceSeries.YValues.Value[i]; x[i] := SourceSeries.XValues.Value[i]; end; pxy := pxy + x[i] * y[i]; xsqua := xsqua + x[i] * x[i]; end; xsum := Sum(x); ysum := Sum(y); b1 := (xsum * ysum - N * pxy) / (xsum * xsum - N * xsqua); b0 := (ysum - b1 * xsum) / N; MainCoef := b1; FreeCoef := b0; if DestSeries <> nil then for i := 0 to N - 1 do if ValueArray <> nil then DestSeries.AddXY(ArgumentArray[i], b1 * ArgumentArray[i] + b0, '', SeriesColor) else DestSeries.AddXY(SourceSeries.XValues.Value[i], b1 * SourceSeries.XValues.Value[i] + b0, '', SeriesColor); if b0 < 0 then s := '' else s := '+ '; Hint := Format('%0.3f', [b1]) + '*X ' + s + Format('%0.3f', [b0]); x := nil; y := nil; end; //Гиперболическая регрессия procedure HyperbolicRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string); var b0, b1, ax, ysum, axsqua, dxy: double; y, x: array of double; i, N: integer; s: string; begin if ValueArray <> nil then N := Length(ValueArray) else N := SourceSeries.XValues.Count; axsqua := 0; ax := 0; dxy := 0; SetLength(x, N); SetLength(y, N); for i := 0 to N - 1 do begin if ValueArray <> nil then begin y[i] := ValueArray[i]; x[i] := ArgumentArray[i]; end else begin y[i] := SourceSeries.YValues.Value[i]; x[i] := SourceSeries.XValues.Value[i]; end; if x[i] = 0 then begin MessageDlg('Hyperbolic regression inapplicable...', mtWarning, [mbOk], 0); Hint := 'No equation'; MainCoef := 0; FreeCoef := 0; Exit; end; dxy := dxy + y[i] / x[i]; ax := ax + 1 / x[i]; axsqua := axsqua + 1 / (x[i] * x[i]); end; ysum := Sum(y); b1 := (dxy - (ysum * ax) / N) / (axsqua - (ax * ax) / N); b0 := (ysum - b1 * ax) / N; MainCoef := b1; FreeCoef := b0; if DestSeries <> nil then for i := 0 to N - 1 do if ValueArray <> nil then DestSeries.AddXY(ArgumentArray[i], b1 / ArgumentArray[i] + b0, '', SeriesColor) else DestSeries.AddXY(SourceSeries.XValues.Value[i], b1 / SourceSeries.XValues.Value[i] + b0, '', SeriesColor); if b0 < 0 then s := '' else s := '+ '; Hint := Format('%0.3f', [b1]) + '/X ' + s + Format('%0.3f', [b0]); x := nil; y := nil; end; //Степенная регрессия procedure PowerRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string); var b0, b1, lnx, lny, xlnsqua, plnxy: double; y, x: array of double; i, N: integer; begin if ValueArray <> nil then N := Length(ValueArray) else N := SourceSeries.XValues.Count; lnx := 0; lny := 0; xlnsqua := 0; plnxy := 0; SetLength(x, N); SetLength(y, N); for i := 0 to N - 1 do begin if ValueArray <> nil then begin y[i] := ValueArray[i]; x[i] := ArgumentArray[i]; end else begin y[i] := SourceSeries.YValues.Value[i]; x[i] := SourceSeries.XValues.Value[i]; end; if (x[i] <= 0) or (y[i] <= 0) then begin MessageDlg('Power regression inapplicable...', mtWarning, [mbOk], 0); Hint := 'No equation'; MainCoef := 0; FreeCoef := 0; Exit; end; lnx := lnx + ln(x[i]); lny := lny + ln(y[i]); plnxy := plnxy + ln(x[i]) * ln(y[i]); xlnsqua := xlnsqua + ln(x[i]) * ln(x[i]); end; b1 := (lnx * lny - N * plnxy) / (lnx * lnx - N * xlnsqua); b0 := exp((lny - b1 * lnx) / N); MainCoef := b1; FreeCoef := b0; if DestSeries <> nil then for i := 0 to N - 1 do if ValueArray <> nil then DestSeries.AddXY(ArgumentArray[i], Power(ArgumentArray[i], b1) * b0, '', SeriesColor) else DestSeries.AddXY(SourceSeries.XValues.Value[i], Power(SourceSeries.XValues.Value[i], b1) * b0, '', SeriesColor); Hint := Format('%0.3f', [b0]) + '*X^' + Format('%0.3f', [b1]); x := nil; y := nil; end; //Полиномиальная регрессия procedure PolynomialRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; PolyDegree: integer; var ArrayCoefs: TDoubleArray; SeriesColor: TColor; var Hint: string); var bcoef, dcoef: TDoubleArray; ccoef: array of TDoubleArray; i, j, k, N: integer; polynom: double; begin if ValueArray <> nil then N := Length(ValueArray) else N := SourceSeries.XValues.Count; Hint := ''; ArrayCoefs := nil; SetLength(ccoef, PolyDegree + 1); for i := 0 to Length(ccoef) - 1 do SetLength(ccoef[i], PolyDegree + 1); SetLength(dcoef, PolyDegree + 1); SetLength(bcoef, PolyDegree + 1); for i := 0 to Length(dcoef) - 1 do begin dcoef[i] := 0; for j := 0 to N - 1 do begin if ValueArray <> nil then dcoef[i] := dcoef[i] + Power(ArgumentArray[j], i) * ValueArray[j] else dcoef[i] := dcoef[i] + Power(SourceSeries.XValues.Value[j], i) * SourceSeries.YValues.Value[j]; end; for j := 0 to Length(ccoef) - 1 do begin ccoef[i][j] := 0; for k := 0 to N - 1 do begin if ValueArray <> nil then ccoef[i][j] := ccoef[i][j] + Power(ArgumentArray[k], i + j) else ccoef[i][j] := ccoef[i][j] + Power(SourceSeries.XValues.Value[k], i + j); end; end; end; for i := 0 to Length(ccoef) - 2 do for j := i + 1 to Length(ccoef) - 1 do begin ccoef[j][i] := -ccoef[j][i] / ccoef[i][i]; dcoef[j] := dcoef[j] + ccoef[j][i] * dcoef[i]; for k := i + 1 to Length(ccoef) - 1 do ccoef[j][k] := ccoef[j][k] + ccoef[j][i] * ccoef[i][k]; end; bcoef[Length(bcoef) - 1] := dcoef[Length(dcoef) - 1] / ccoef[Length(bcoef) - 1][Length(bcoef) - 1]; for i := Length(ccoef) - 2 downto 0 do begin for j := i + 1 to Length(ccoef) - 1 do bcoef[i] := bcoef[i] + bcoef[j] * ccoef[i][j]; bcoef[i] := (dcoef[i] - bcoef[i]) / ccoef[i][i]; end; SetLength(ArrayCoefs, Length(bcoef)); for i := 0 to Length(bcoef) - 1 do ArrayCoefs[i] := bcoef[i]; if DestSeries <> nil then for i := 0 to N - 1 do begin polynom := 0; if ValueArray <> nil then begin for j := 0 to PolyDegree do polynom := polynom + bcoef[j] * Power(ArgumentArray[i], j); DestSeries.AddXY(ArgumentArray[i], polynom, '', SeriesColor); end else begin for j := 0 to PolyDegree do polynom := polynom + bcoef[j] * Power(SourceSeries.XValues.Value[i], j); DestSeries.AddXY(SourceSeries.XValues.Value[i], polynom, '', SeriesColor); end; end; for j := PolyDegree downto 0 do Hint := Hint + Format('%0.3f', [bcoef[j]]) + '*X^' + IntToStr(j); dcoef := nil; bcoef := nil; ccoef := nil; end; //Показательная регрессия procedure ExponentRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string; Warning: boolean); var i, N: integer; x, y: array of double; lgy, xsum, xsqua, a, b, lga, xlgy, lgb: double; begin if ValueArray <> nil then N := Length(ValueArray) else N := SourceSeries.XValues.Count; lgy := 0; xsqua := 0; xlgy := 0; SetLength(x, N); SetLength(y, N); for i := 0 to N - 1 do begin if ValueArray <> nil then begin y[i] := ValueArray[i]; x[i] := ArgumentArray[i]; end else begin y[i] := SourceSeries.YValues.Value[i]; x[i] := SourceSeries.XValues.Value[i]; end; if y[i] <= 0 then begin if Warning then MessageDlg('Exponent regression inapplicable', mtWarning, [mbOk], 0); Hint := 'No equation'; MainCoef := 0; FreeCoef := 0; Exit; end; lgy := lgy + Log10(y[i]); xsqua := xsqua + x[i] * x[i]; xlgy := xlgy + x[i] * Log10(y[i]); end; xsum := Sum(x); lgb := (xlgy - (lgy * xsum) / N) / (xsqua - (xsum * xsum) / N); lga := (lgy - lgb * xsum) / N; b := Power(10, lgb); a := Power(10, lga); MainCoef := b; FreeCoef := a; if DestSeries <> nil then for i := 0 to N - 1 do if ValueArray <> nil then DestSeries.AddXY(ArgumentArray[i], a * Power(b, ArgumentArray[i]), '', SeriesColor) else DestSeries.AddXY(SourceSeries.XValues.Value[i], a * Power(b, SourceSeries.XValues.Value[i]), '', SeriesColor); Hint := 'Exponent regression equation: Y = ' + Format('%0.5f', [a]) + ' * (' + Format('%0.5f', [b]) + ' ^ X)'; x := nil; y := nil; end; //Экспоненциальная регрессия procedure ExponentialRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string; Warning: boolean); var i, N: integer; x, y: array of double; lny, xsum, xsqua, xlny, b0, b1: double; begin MainCoef := 0; FreeCoef := 0; if ValueArray <> nil then N := Length(ValueArray) else N := SourceSeries.XValues.Count; lny := 0; xsqua := 0; xlny := 0; SetLength(x, N); SetLength(y, N); for i := 0 to N - 1 do begin if ValueArray <> nil then begin y[i] := ValueArray[i]; x[i] := ArgumentArray[i]; end else begin y[i] := SourceSeries.YValues.Value[i]; x[i] := SourceSeries.XValues.Value[i]; end; if y[i] <= 0 then begin if Warning then MessageDlg('Exponential regression inapplicable', mtWarning, [mbOk], 0); Hint := 'No equation'; MainCoef := 0; FreeCoef := 0; Exit; end; lny := lny + Ln(y[i]); xsqua := xsqua + x[i] * x[i]; xlny := xlny + x[i] * Ln(y[i]); end; xsum := Sum(x); b1 := (xsum * lny - N * xlny) / (xsum * xsum - N * xsqua); b0 := exp((lny - b1 * xsum) / N); MainCoef := b1; FreeCoef := b0; if DestSeries <> nil then for i := 0 to N - 1 do if ValueArray <> nil then DestSeries.AddXY(ArgumentArray[i], b0 * Exp(b1 * ArgumentArray[i]), '', SeriesColor) else DestSeries.AddXY(SourceSeries.XValues.Value[i], b0 * Exp(b1 * SourceSeries.XValues.Value[i]), '', SeriesColor); Hint := 'Exponential regression equation: Y = ' + Format('%0.5f', [b0]) + ' * exp(' + Format('%0.5f', [b1]) + ' * X)'; x := nil; y := nil; end; //Степенно-экспоненциальная регрессия procedure ExpPowerRegression(ValueArray, ArgumentArray: TDoubleArray; SourceSeries, DestSeries: TChartSeries; var MainCoef, FreeCoef: double; SeriesColor: TColor; var Hint: string; Warning: boolean); var i, N: integer; x, y: array of double; matr: array[0..3] of double; lny, xsum, xsqua, xlny, b0, b1: double; begin MainCoef := 0; FreeCoef := 0; if ValueArray <> nil then N := Length(ValueArray) else N := SourceSeries.XValues.Count; lny := 0; xsqua := 0; xlny := 0; SetLength(x, N); SetLength(y, N); for i := 0 to N - 1 do begin if ValueArray <> nil then begin y[i] := ValueArray[i]; x[i] := ArgumentArray[i]; end else begin y[i] := SourceSeries.YValues.Value[i]; x[i] := SourceSeries.XValues.Value[i]; end; if y[i] <= 0 then begin if Warning then MessageDlg('Exponent-Power regression inapplicable', mtWarning, [mbOk], 0); Hint := 'No equation'; MainCoef := 0; FreeCoef := 0; Exit; end; lny := lny + Ln(y[i]); xsqua := xsqua + x[i] * x[i]; xlny := xlny + x[i] * Ln(y[i]); end; xsum := Sum(x); b1 := (xsum * lny - N * xlny) / (xsum * xsum - N * xsqua); b0 := exp((lny - b1 * xsum) / N); MainCoef := b1; FreeCoef := b0; if DestSeries <> nil then for i := 0 to N - 1 do if ValueArray <> nil then DestSeries.AddXY(ArgumentArray[i], b0 * Exp(b1 * ArgumentArray[i]), '', SeriesColor) else DestSeries.AddXY(SourceSeries.XValues.Value[i], b0 * Exp(b1 * SourceSeries.XValues.Value[i]), '', SeriesColor); Hint := 'Exponent-Power regression equation: Y = ' + Format('%0.5f', [b0]) + ' * exp(' + Format('%0.5f', [b1]) + ' * X)'; x := nil; y := nil; end; //Общая процедура проверки массива procedure CheckArrayBounds(var CArray: TDoubleArray; var FromPoint, ToPoint: integer); begin if FromPoint < 0 then FromPoint := 0; if (ToPoint <= 0) or (ToPoint > Length(CArray) - 1) then ToPoint := Length(CArray) - 1; if FromPoint > ToPoint then ToPoint := FromPoint; end; //Общая процедура проверки серии procedure CheckSeriesBounds(CSeries: TChartSeries; var FromPoint, ToPoint: integer); begin if FromPoint < 0 then FromPoint := 0; if (ToPoint <= 0) or (ToPoint > CSeries.XValues.Count - 1) then ToPoint := CSeries.XValues.Count - 1; if FromPoint > ToPoint then ToPoint := FromPoint; end; //Извлечение массива из массива procedure ArrayFromArray(var SourceArray, DestArray: TDoubleArray; FromPoint, ToPoint, Discrete: integer; Derivative: boolean); var i: integer; begin DestArray := nil; if SourceArray = nil then DestArray := nil else begin CheckArrayBounds(SourceArray, FromPoint, ToPoint); if Discrete = 0 then Discrete := 1; if Derivative = false then begin SetLength(DestArray, ((ToPoint - FromPoint) div Discrete) + 1); for i := 0 to Length(DestArray) - 1 do DestArray[i] := SourceArray[i * Discrete + FromPoint]; end else begin SetLength(DestArray, ((ToPoint - FromPoint) div Discrete)); for i := 1 to Length(DestArray) do DestArray[i - 1] := (SourceArray[i * Discrete + FromPoint] - SourceArray[i * Discrete + FromPoint - 1]) / Discrete; end; end; end; //Извлечение массива из серии procedure ArrayFromSeries(var ValueArray: TDoubleArray; DataSeries: TChartSeries; FromPoint, ToPoint, Discrete: integer; Derivative: boolean); var i: integer; begin if DataSeries = nil then ValueArray := nil else with DataSeries do begin CheckSeriesBounds(DataSeries, FromPoint, ToPoint); if Discrete = 0 then Discrete := 1; if Derivative = false then begin SetLength(ValueArray, ((ToPoint - FromPoint) div Discrete) + 1); for i := 0 to Length(ValueArray) - 1 do ValueArray[i] := YValues.Value[i * Discrete + FromPoint]; end else begin SetLength(ValueArray, ((ToPoint - FromPoint) div Discrete)); for i := 1 to Length(ValueArray) do ValueArray[i - 1] := (YValues.Value[i * Discrete + FromPoint] - YValues.Value[i * Discrete + FromPoint - 1]) / (XValues.Value[i * Discrete + FromPoint] - XValues.Value[i * Discrete + FromPoint - 1]); end; end; end; //Извлечение серии из массива procedure SeriesFromArray(var ValueArray: TDoubleArray; DataSeries: TChartSeries; FromPoint, ToPoint, Discrete: integer; Derivative: boolean); var i, n: integer; begin if DataSeries = nil then Exit else with DataSeries do begin Clear; CheckArrayBounds(ValueArray, FromPoint, ToPoint); if Discrete = 0 then Discrete := 1; if Derivative = false then begin n := ((ToPoint - FromPoint) div Discrete) + 1; for i := 0 to n - 1 do DataSeries.AddXY(i, ValueArray[i * Discrete + FromPoint], '', DataSeries.SeriesColor); end else begin n := (ToPoint - FromPoint) div Discrete; for i := 1 to n do DataSeries.AddXY(i - 1, (ValueArray[i * Discrete + FromPoint] - ValueArray[i * Discrete + FromPoint - 1]) / Discrete, '', DataSeries.SeriesColor); end; end; end; //Извлечение производной из массива function DerivFromArray(var SourceArray: TDoubleArray; FromPoint, ToPoint, Discrete: integer; Extremum: string; var Position: integer): double; var i: integer; d: double; begin DerivFromArray := 0; if SourceArray = nil then DerivFromArray := 0 else begin CheckArrayBounds(SourceArray, FromPoint, ToPoint); if Discrete = 0 then Discrete := 1; SetLength(rv, (ToPoint - FromPoint) div Discrete); for i := 1 to Length(rv) do rv[i - 1] := (SourceArray[i * Discrete + FromPoint] - SourceArray[i * Discrete + FromPoint - 1]) / Discrete; if Extremum = 'max' then d := MaxValue(rv); if Extremum = 'min' then d := MinValue(rv); if Extremum = 'mean' then d := Mean(rv); for i := 0 to Length(rv) - 1 do if rv[i] = d then begin Position := i; break; end; DerivFromArray := d; end; end; //Извлечение производной из серии function DerivFromSeries(DataSeries: TChartSeries; FromPoint, ToPoint, Discrete: integer; Extremum: string; var Position: integer): double; var i: integer; d: double; begin DerivFromSeries := 0; if DataSeries = nil then DerivFromSeries := 0 else with DataSeries do begin CheckSeriesBounds(DataSeries, FromPoint, ToPoint); if Discrete = 0 then Discrete := 1; SetLength(rv, (ToPoint - FromPoint) div Discrete); for i := 1 to Length(rv) do rv[i - 1] := (YValues.Value[i * Discrete + FromPoint] - YValues.Value[i * Discrete + FromPoint - 1]) / (XValues.Value[i * Discrete + FromPoint] - XValues.Value[i * Discrete + FromPoint - 1]); if Extremum = 'max' then d := MaxValue(rv); if Extremum = 'min' then d := MinValue(rv); if Extremum = 'mean' then d := Mean(rv); for i := 0 to Length(rv) - 1 do if rv[i] = d then begin Position := i; break; end; DerivFromSeries := d; end; end; //Извлечение величины из серии function ValueFromSeries(DataSeries: TChartSeries; FromPoint, ToPoint: integer; Extremum: string; var Position: integer): double; var i: integer; d: double; begin if DataSeries = nil then ValueFromSeries := 0 else with DataSeries do begin CheckSeriesBounds(DataSeries, FromPoint, ToPoint); SetLength(rv, ToPoint - FromPoint); for i := 0 to Length(rv) - 1 do rv[i] := YValues.Value[FromPoint + i]; if Extremum = 'max' then d := MaxValue(rv); if Extremum = 'min' then d := MinValue(rv); if Extremum = 'mean' then d := Mean(rv); for i := 0 to Length(rv) - 1 do if rv[i] = d then begin Position := i; break; end; ValueFromSeries := d; end; end; //Извлечение величины из массива function ValueFromArray(var SourceArray: TDoubleArray; FromPoint, ToPoint: integer; Extremum: string; var Position: integer): double; var i: integer; d: double; begin if SourceArray = nil then ValueFromArray := 0 else begin CheckArrayBounds(SourceArray, FromPoint, ToPoint); SetLength(rv, ToPoint - FromPoint); for i := 0 to Length(rv) - 1 do rv[i] := SourceArray[FromPoint + i]; if Extremum = 'max' then d := MaxValue(rv); if Extremum = 'min' then d := MinValue(rv); if Extremum = 'mean' then d := Mean(rv); for i := 0 to Length(rv) - 1 do if rv[i] = d then begin Position := i; break; end; ValueFromArray := d; end; end; //Вычисление площади под кривой, получаемой данными из массива function CalculateAreaOfArray(var SourceArray: TDoubleArray; FromPoint, ToPoint, Method: integer; BindToZero: boolean): double; var i: integer; sq, subv: double; begin if SourceArray = nil then CalculateAreaOfArray := 0 else begin CheckArrayBounds(SourceArray, FromPoint, ToPoint); sq := 0; if BindToZero then subv := (SourceArray[ToPoint] + SourceArray[FromPoint]) / 2 else subv := 0; for i := FromPoint to ToPoint - 1 do begin if Method = 1 then sq := sq + Abs(SourceArray[i] - subv) + (Abs(SourceArray[i + 1] - subv) - Abs(SourceArray[i] - subv)) / 2; if Method = 2 then sq := sq + Abs(SourceArray[i] - subv) + (Abs(SourceArray[i + 1] - subv) - Abs(SourceArray[i] - subv)) / 2 - 1 / (48 * Power(0.5, 1.5)); if Method = 3 then if (i mod 2) = 1 then sq := sq + 2 * Abs(SourceArray[i] - subv); if Method = 4 then if (i mod 2) = 1 then sq := sq + 2 * Abs(SourceArray[i] - subv) - 1 / (96 * Power(0.5, 1.5)); end; CalculateAreaOfArray := sq; end; end; //Вычисление площади под кривой, получаемой данными из серии function CalculateAreaOfSeries(DataSeries: TChartSeries; FromPoint, ToPoint, Method: integer; BindToZero: boolean): double; var i: integer; sq, subv: double; begin if DataSeries = nil then CalculateAreaOfSeries := 0 else with DataSeries do begin CheckSeriesBounds(DataSeries, FromPoint, ToPoint); sq := 0; if BindToZero then subv := (YValues.Value[ToPoint] + YValues.Value[FromPoint]) / 2 else subv := 0; for i := FromPoint to ToPoint - 1 do begin if Method = 1 then sq := sq + Abs(YValues.Value[i] - subv) + (Abs(YValues.Value[i + 1] - subv) - Abs(YValues.Value[i] - subv)) / 2; if Method = 2 then sq := sq + Abs(YValues.Value[i] - subv) + (Abs(YValues.Value[i + 1] - subv) - Abs(YValues.Value[i] - subv)) / 2 - 1 / (48 * Power(0.5, 1.5)); if Method = 3 then if (i mod 2) = 1 then sq := sq + 2 * Abs(YValues.Value[i] - subv); if Method = 4 then if (i mod 2) = 1 then sq := sq + 2 * Abs(YValues.Value[i] - subv) - 1 / (96 * Power(0.5, 1.5)); end; CalculateAreaOfSeries := sq; end; end; //Исключение линейной составляющей procedure LinearTrendExclusion(var ValueArray: TDoubleArray); var i, N: integer; b0, b1, nx: double; begin N := Length(ValueArray); nx := 0; for i := 0 to N - 1 do nx := nx + (i + 1) * ValueArray[i]; b0 := (2 * (2 * N + 1) * Sum(ValueArray) - 6 * nx) / (N * (N - 1)); b1 := (12 * nx - 6 * (N + 1) * Sum(ValueArray)) / (N * (N - 1) * (N + 1)); for i := 0 to N - 1 do begin ValueArray[i] := ValueArray[i] - (i * b1); end; end; //Расцветка серии procedure ColorizeSeries(DataSeries: TChartSeries; NewColor: TColor); var i: integer; begin for i := 0 to DataSeries.XValues.Count - 1 do DataSeries.ValueColor[i] := NewColor; end; //Задание нового приращения по оси X procedure SetXInterval(DataSeries: TChartSeries; XInterval: double); var i: integer; begin for i := 0 to DataSeries.XValues.Count - 1 do DataSeries.XValues.Value[i] := DataSeries.XValues.Value[i] * XInterval; end; //Привязка серии к новой оси procedure SetSeriesAxis(DataSeries: TChartSeries; NewAxis: TVertAxis); begin DataSeries.VertAxis := NewAxis; end; end. Это большой блок кода, но я постараюсь дать обзор и подчеркнуть некоторые ключевые моменты. Код написан на языке Delphi Pascal и appears to be a library для обработки и анализа серий данных (например, диаграмм). Библиотека предлагает различные функции и процедуры для задач, таких как:
Некоторые заметные процедуры включают:
Код также включает в себя некоторые утилитарные функции для задач, таких как вычисление максимального или минимального значения массива, и нахождение позиции значения в массиве. В целом, эта библиотека appears to provide a wide range of tools for processing and analyzing data series, making it useful for various applications involving data visualization and statistical analysis. This is a Delphi unit that provides various functions and procedures for working with chart series, arrays, and mathematical calculations. Here's a breakdown of the components: 1. `LinearRegression` procedure: calculates the linear regression equation gi Комментарии и вопросыПолучайте свежие новости и обновления по Object Pascal, Delphi и Lazarus прямо в свой смартфон. Подпишитесь на наш Telegram-канал delphi_kansoftware и будьте в курсе последних тенденций в разработке под Linux, Windows, Android и iOS Материалы статей собраны из открытых источников, владелец сайта не претендует на авторство. Там где авторство установить не удалось, материал подаётся без имени автора. В случае если Вы считаете, что Ваши права нарушены, пожалуйста, свяжитесь с владельцем сайта.
|
||||
©KANSoftWare (разработка программного обеспечения, создание программ, создание интерактивных сайтов), 2007 |