Модуль для работы с комплексными числамиDelphi , Синтаксис , Математика
Автор: Separator { **** UBPFD *********** by delphibase.endimus.com **** >> Модуль предназначен для работы с комплексными числами. Данный модуль был взят с http://gaivan.hypermart.net и переработан мной Зависимости: SysUtils - для работы ComplexToStr и StrToComplex; Math - для cmPow Автор: Separator, wilhelm@mail.ru, ICQ:162770303, Алматы Copyright: http://gaivan.hypermart.net Дата: 16 марта 2004 г. ***************************************************** } unit cmplx; //----------------------------------------------------------------------------// // Complex numbers routines library // // Copyright (c) 2001 by Serghei Gaivan // // e-mail: gaivan@mail.hypermart.net // // http://gaivan.hypermart.net // //----------------------------------------------------------------------------// // Update: // // 04.07.2003 Sergey Vilgelm (wilhelm@mail.kz) // //----------------------------------------------------------------------------// interface uses SysUtils, Math; type TComplexType = extended; PComplex = ^TComplex; TComplex = packed record x: TComplexType; y: TComplexType; end; const OneComplex: TComplex = (x: 1; y: 0); NegOneComplex: TComplex = (x: - 1; y: 0); OneComplexIm: TComplex = (x: 0; y: 1); NegOneComplexIm: TComplex = (x: 0; y: - 1); NullComplex: TComplex = (x: 0; y: 0); OneOneComplex: TComplex = (x: 1; y: 1); NegOneOneComplex: TComplex = (x: - 1; y: 1); OneNegOneComplex: TComplex = (x: 1; y: - 1); NegOneNegOneComplex: TComplex = (x: - 1; y: - 1); function Re(z: TComplex): TComplexType; // z :--> Re(z) function Im(z: TComplex): TComplexType; // z :--> Im(z) //------ Unary operations ----------------------------------------------------// function cConj(z: TComplex): TComplex; // z :--> z* function cNeg(z: TComplex): TComplex; // z :--> -z function cFlip(z: TComplex): TComplex; // (x, y) :--> (y, x) function cRCW(z: TComplex): TComplex; // (x, y) :--> (-y, x) function cRCC(z: TComplex): TComplex; // (x, y) :--> (y, -x) //------ Binary operations ---------------------------------------------------// function cSum(z1, z2: TComplex): TComplex; // z1, z2 :--> z1 + z2 function cSub(z1, z2: TComplex): TComplex; // z1, z2 :--> z1 - z2 function cMul(z1, z2: TComplex): TComplex; // z1, z2 :--> z1 * z2 function cDiv(z1, z2: TComplex): TComplex; // z1, z2 :--> z1 / z2 //------ Standard routines ---------------------------------------------------// function cPolar(rho, phi: TComplexType): TComplex; // (rho, phi) :--> z function cAbs(z: TComplex): TComplexType; // z :--> |z| function cArg(z: TComplex): TComplexType; // z :--> arg(z) function cNorm(z: TComplex): TComplexType; // z :--> |z|^2 //------ Algebraic functions -------------------------------------------------// function cSqr(z: TComplex): TComplex; // z :--> z^2 function cInv(z: TComplex): TComplex; // z :--> 1 / z function cSqrt(z: TComplex): TComplex; // z :--> Sqrt(z) function cPow(z: TComplex; n: integer): TComplex; // z :--> z^n //------ Transcendent functions ----------------------------------------------// function cLn(z: TComplex): TComplex; // z :--> Ln(z) function cExp(z: TComplex): TComplex; // z :--> Exp(z) //------ Trigonometric functions ---------------------------------------------// function cSin(z: TComplex): TComplex; // z :--> Sin(z) function cCos(z: TComplex): TComplex; // z :--> Cos(z) function cTan(z: TComplex): TComplex; // z :--> Tan(z) function cCotan(z: TComplex): TComplex; // z :--> Cotan(z) //------ Hyperbolic functions ------------------------------------------------// function cSinh(z: TComplex): TComplex; // z :--> Sinh(z) function cCosh(z: TComplex): TComplex; // z :--> Cosh(z) function cTanh(z: TComplex): TComplex; // z :--> Tanh(z) function cCotanh(z: TComplex): TComplex; // z :--> Cotanh(z) //------ Other operations ----- Sergey Vilgelm -------------------------------// function Complex(x, y: TComplexType): TComplex; // Result.x:= x; Result.y:= y function cEqual(z1, z2: TComplex): boolean; // z1 = z2 function cEqualZero(z: TComplex): boolean; // z.x = 0 and z.y = 0 function cEqualOne(z: TComplex): boolean; // z.x = 1 and z.y = 0 function cmPow(z: TComplex; n: integer): TComplex; // Альтернативное возведение в степень, так как оригинальный cPow не корректно работает //------ String operations ---- Sergey Vilgelm -------------------------------// function ComplexToStr(z: TComplex): string; function StrToComplex(S: string): TComplex; implementation //----------------------------------------------------------------------------// function Re(z: TComplex): TComplexType; register; // z :--> Re(z) asm FLD TComplex.x [EAX] end; //----------------------------------------------------------------------------// function Im(z: TComplex): TComplexType; register; // z :--> Im(z) asm FLD TComplex.y [EAX] end; //----------------------------------------------------------------------------// //------ Unary operations ----------------------------------------------------// //----------------------------------------------------------------------------// function cConj(z: TComplex): TComplex; register; // z :--> z* asm FLD TComplex.y [EAX] FCHS FSTP TComplex.y [EDX] FLD TComplex.x [EAX] FSTP TComplex.x [EDX] end; //----------------------------------------------------------------------------// function cNeg(z: TComplex): TComplex; register; // (x, y) :--> (-x, -y) asm FLD TComplex.x [EAX] FCHS FSTP TComplex.x [EDX] FLD TComplex.y [EAX] FCHS FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// function cFlip(z: TComplex): TComplex; // (x, y) :--> (y, x) asm FLD TComplex.y [EAX] FSTP TComplex.x [EDX] FLD TComplex.x [EAX] FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// function cRCW(z: TComplex): TComplex; register; // (x, y) :--> (-y, x) that is z :--> i * z asm FLD TComplex.y [EAX] FCHS FSTP TComplex.x [EDX] FLD TComplex.x [EAX] FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// function cRCC(z: TComplex): TComplex; register; // (x, y) :--> (y, -x) asm FLD TComplex.y [EAX] FSTP TComplex.x [EDX] FLD TComplex.x [EAX] FCHS FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// //------ Binary operations ---------------------------------------------------// //----------------------------------------------------------------------------// function cSum(z1, z2: TComplex): TComplex; register; // z1, z2 :--> z1 + z2 asm FLD TComplex.x [EAX] FLD TComplex.x [EDX] FADD FSTP TComplex.x [ECX] FLD TComplex.y [EAX] FLD TComplex.y [EDX] FADD FSTP TComplex.y [ECX] end; //----------------------------------------------------------------------------// function cSub(z1, z2: TComplex): TComplex; register; // z1, z2 :--> z1 - z2 asm FLD TComplex.x [EAX] FLD TComplex.x [EDX] FSUB FSTP TComplex.x [ECX] FLD TComplex.y [EAX] FLD TComplex.y [EDX] FSUB FSTP TComplex.y [ECX] end; //----------------------------------------------------------------------------// function cMul(z1, z2: TComplex): TComplex; register; // z1, z2 :--> z1 * z2 asm FLD TComplex.x [EAX] FLD TComplex.x [EDX] FLD ST // x2 x2 x1 FMUL ST, ST(2) // x1*x2 x2 x1 FLD TComplex.y [EAX] FXCH ST(1) // x1*x2 y1 x2 x1 FLD TComplex.y [EDX] FXCH ST(1) FLD ST(1) FMUL ST, ST(3) FSUB FSTP TComplex.x [ECX] // y2 y1 x2 x1 FMULP ST(3), ST(0) //y1 x2 x1*y2 FMUL // x2*y1 x1*y2 FADD FSTP TComplex.y [ECX] end; //----------------------------------------------------------------------------// function cDiv(z1, z2: TComplex): TComplex; register; // z1, z2 :--> z1 / z2 asm FLD TComplex.y [EDX] FLD ST(0) FMUL ST, ST FLD TComplex.x [EDX] FXCH ST(1) FLD ST(1) FMUL ST, ST FADD FLD1 FDIVR FLD TComplex.x [EAX] FLD TComplex.y [EAX] FXCH ST(2) FLD ST(1) FMUL ST, ST(4) FLD ST(3) FMUL ST, ST(6) FADD FMUL ST, ST(1) FSTP TComplex.x [ECX] FXCH ST(4) FMUL FXCH ST(2) FMUL // x2*y1 x1*y2 1/norm FSUBR FMUL FSTP TComplex.y [ECX] end; //----------------------------------------------------------------------------// //------ Standard routines ---------------------------------------------------// //----------------------------------------------------------------------------// function cPolar(rho, phi: TComplexType): TComplex; register; // (rho, phi) :--> z asm FLD rho FLD phi FSINCOS FMUL ST, ST(2) FSTP TComplex.x [EAX] FMUL FSTP TComplex.y [EAX] end; //----------------------------------------------------------------------------// function cAbs(z: TComplex): TComplexType; register; // z :--> |z| asm FLD TComplex.y [EAX] FMUL ST, ST FLD TComplex.x [EAX] FMUL ST, ST FADD FSQRT end; //----------------------------------------------------------------------------// function cArg(z: TComplex): TComplexType; register; // z :--> arg(z) asm FLD TComplex.y [EAX] FLD TComplex.x [EAX] FPATAN end; //----------------------------------------------------------------------------// function cNorm(z: TComplex): TComplexType; register; // z :--> |z|^2 asm FLD TComplex.y [EAX] FMUL ST, ST FLD TComplex.x [EAX] FMUL ST, ST FADD end; //----------------------------------------------------------------------------// //------ Algebraic functions -------------------------------------------------// //----------------------------------------------------------------------------// function cSqr(z: TComplex): TComplex; register; // z :--> z^2 asm FLD TComplex.y [EAX] FLD ST FMUL ST, ST FLD TComplex.x [EAX] FLD ST FMUL ST, ST FXCH ST(3) FMUL FADD ST, ST FSTP TComplex.y [EDX] FSUB FSTP TComplex.x [EDX] end; //----------------------------------------------------------------------------// function cSqrt(z: TComplex): TComplex; register; // z :--> sqrt(z) asm FLD TComplex.x [EAX] FLD ST FMUL ST, ST FLD TComplex.y [EAX] FMUL ST, ST FADD FSQRT FLD ST(1) FADD ST, ST(1) FABS FLD1 FADD ST, ST FDIV FSQRT FSTP TComplex.x [EDX] FSUB FABS FLD1 FADD ST, ST FDIV FSQRT FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// function cInv(z: TComplex): TComplex; register; // z :--> 1/z asm FLD TComplex.y [EAX] FLD ST FMUL ST, ST FLD TComplex.x [EAX] FXCH FLD ST(1) FMUL ST, ST FADD FLD1 FDIVR FXCH ST(2) FMUL ST, ST(2) FSTP TComplex.y [EDX] FMUL FSTP TComplex.x [EDX] end; //----------------------------------------------------------------------------// function cPow(z: TComplex; n: integer): TComplex; register; // z :--> z^n asm FLD TComplex.x [EAX] FLD TComplex.y [EAX] FLD1 FLD ST(2) FMUL ST, ST FLD ST(2) FMUL ST, ST FADD FSQRT MOV EAX,EDX JMP @2 @1: FMUL ST, ST @2: SHR EAX,1 JNC @1 FMUL ST(1),ST JNZ @1 FSTP ST(0) FXCH ST(2) FPATAN MOV [ESP-$04],EDX FILD DWORD PTR [ESP-$04] FMUL FSINCOS FMUL ST,ST(2) FSTP TComplex.x [ECX] FMUL FSTP TComplex.y [ECX] end; //----------------------------------------------------------------------------// //------- Transcendent functions ---------------------------------------------// //----------------------------------------------------------------------------// function cLn(z: TComplex): TComplex; register; // z :--> Ln(z) asm FLD TComplex.y [EAX] FLD TComplex.x [EAX] FLDLN2 FLD1 FADD ST, ST FDIV FLD ST(2) FMUL ST, ST FLD ST(2) FMUL ST, ST FADD FYL2X FSTP TComplex.x [EDX] FPATAN FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// function cExp(z: TComplex): TComplex; register; // z :--> Exp(z) asm FLD TComplex.x [EAX] FLDL2E FMUL FLD ST(0) FRNDINT FSUB ST(1), ST FXCH ST(1) F2XM1 FLD1 FADD FSCALE FSTP ST(1) FLD TComplex.y [EAX] FSINCOS FMUL ST,ST(2) FSTP TComplex.x [EDX] FMUL FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// //------ Trigonometric functions ---------------------------------------------// //----------------------------------------------------------------------------// function cSin(z: TComplex): TComplex; register; // z :--> Sin(z) asm FLD TComplex.y [EAX] FLDL2E FMUL FLD ST(0) FRNDINT FSUB ST(1), ST FXCH ST(1) F2XM1 FLD1 FADD FSCALE FSTP ST(1) FLD1 FLD ST(1) FADD ST, ST FDIV FXCH FLD1 FADD ST, ST FDIV FLD TComplex.x [EAX] FSINCOS FLD ST(2) FSUB ST, ST(4) FMUL FSTP TComplex.y [EDX] FXCH ST(2) FADD FMUL FSTP TComplex.x [EDX] end; //----------------------------------------------------------------------------// function cCos(z: TComplex): TComplex; register; // z :--> Cos(z) asm FLD TComplex.y [EAX] FLDL2E FMUL FLD ST(0) FRNDINT FSUB ST(1), ST FXCH ST(1) F2XM1 FLD1 FADD FSCALE FSTP ST(1) FLD1 FLD ST(1) FADD ST, ST FDIV FXCH FLD1 FADD ST, ST FDIV FLD TComplex.x [EAX] FSINCOS FLD ST(2) FADD ST, ST(4) FMUL FSTP TComplex.x [EDX] FXCH ST(2) FSUBR FMUL FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// function cTan(z: TComplex): TComplex; register; // z :--> Tan(z) asm FLD TComplex.x [EAX] FADD ST, ST FLD TComplex.y [EAX] FADD ST, ST // 2y 2x FLDL2E FMUL FLD ST(0) FRNDINT FSUB ST(1), ST FXCH ST(1) F2XM1 FLD1 FADD FSCALE FSTP ST(1) // exp(2y) 2x FLD1 // 1 exp(2y) 2x FDIV ST(0), ST(1) // exp(-2y) exp(2y) 2x FLD1 FADD ST, ST // 2 exp(-2y) exp(2y) 2x FLD ST(0) // 2 2 exp(-2y) exp(2y) 2x FDIVP ST(2), ST(0) // 2 exp(-2y)/2 exp(2y) 2x FDIVP ST(2), ST(0) // exp(-2y)/2 exp(2y)/2 2x FLD ST(1) // exp(2y)/2 exp(-2y)/2 exp(2y)/2 2x FSUB ST(0), ST(1) // sinh(2y) exp(-2y)/2 exp(2y)/2 2x FXCH ST(2) // exp(2y)/2 exp(-2y)/2 sinh(2y) 2x FADD // cosh(2y) sinh(2y) 2x FXCH ST(2) // 2x sinh(2y) cosh(2y) FSINCOS // cos(2x) sin(2x) sinh(2y) cosh(2y) FADDP ST(3), ST(0) // sin(2x) sinh(2y) (cos+cosh) FDIV ST(0), ST(2) FSTP TComplex.x [EDX] // sinh(2y) (cos+cosh) FDIVR FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// function cCotan(z: TComplex): TComplex; register; // z :--> Cotan(z) asm FLD TComplex.x [EAX] FADD ST, ST FLD TComplex.y [EAX] FADD ST, ST // 2y 2x FLDL2E FMUL FLD ST(0) FRNDINT FSUB ST(1), ST FXCH ST(1) F2XM1 FLD1 FADD FSCALE FSTP ST(1) // exp(2y) 2x FLD1 // 1 exp(2y) 2x FDIV ST(0), ST(1) // exp(-2y) exp(2y) 2x FLD1 FADD ST, ST // 2 exp(-2y) exp(2y) 2x FLD ST(0) // 2 2 exp(-2y) exp(2y) 2x FDIVP ST(2), ST(0) // 2 exp(-2y)/2 exp(2y) 2x FDIVP ST(2), ST(0) // exp(-2y)/2 exp(2y)/2 2x FLD ST(0) // exp(-2y)/2 exp(-2y)/2 exp(2y)/2 2x FSUB ST(0), ST(2) // -sinh(2y) exp(-2y)/2 exp(2y)/2 2x FXCH ST(2) FADD FXCH ST(2) FSINCOS FSUBP ST(3), ST(0) FDIV ST(0), ST(2) FSTP TComplex.x [EDX] FDIVR FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// //------ Hyperbolic functions -----------------------------------------------// //----------------------------------------------------------------------------// function cSinh(z: TComplex): TComplex; register; // z :--> Sinh(z) asm FLD TComplex.x [EAX] FLDL2E FMUL FLD ST(0) FRNDINT FSUB ST(1), ST FXCH ST(1) F2XM1 FLD1 FADD FSCALE FSTP ST(1) // exp(x) FLD1 // 1 exp(x) FLD ST(1) // exp(x) 1 exp(x) FADD ST, ST // 2exp(x) 1 exp(x) FDIV // 1/2exp(x) exp(x) FXCH // exp(x) 1/2exp(x) FLD1 // 1 exp(x) 1/2exp(x) FADD ST, ST // 2 exp(x) 1/2exp(x) FDIV // exp(x)/2 1/2exp(x) FLD TComplex.y [EAX] // y tmp tmp2 FSINCOS // cos(y) sin(y) tmp tmp2 FLD ST(2) // tmp cos(y) sin(y) tmp tmp2 FSUB ST, ST(4) // (tmp-tmp2) cos(y) sin(y) tmp tmp2 FMUL FSTP TComplex.x [EDX] // sin(y) tmp tmp2 FXCH ST(2) // tmp2 tmp sin(y) FADD // (tmp+tmp2 sin(y) FMUL FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// function cCosh(z: TComplex): TComplex; register; // z :--> Cosh(z) asm FLD TComplex.x [EAX] FLDL2E FMUL FLD ST(0) FRNDINT FSUB ST(1), ST FXCH ST(1) F2XM1 FLD1 FADD FSCALE FSTP ST(1) // exp(x) FLD1 // 1 exp(x) FLD ST(1) // exp(x) 1 exp(x) FADD ST, ST // 2exp(x) 1 exp(x) FDIV // 1/2exp(x) exp(x) FXCH // exp(x) 1/2exp(x) FLD1 // 1 exp(x) 1/2exp(x) FADD ST, ST // 2 exp(x) 1/2exp(x) FDIV // exp(x)/2 1/2exp(x) FLD TComplex.y [EAX] // y tmp tmp2 FSINCOS // cos(y) sin(y) tmp tmp2 FLD ST(2) // tmp cos(y) sin(y) tmp tmp2 FADD ST, ST(4) // (tmp+tmp2) cos(y) sin(y) tmp tmp2 FMUL FSTP TComplex.x [EDX] // sin(y) tmp tmp2 FXCH ST(2) // tmp2 tmp sin(y) FSUB // (tmp-tmp2 sin(y) FMUL FSTP TComplex.y [EDX] end; //----------------------------------------------------------------------------// function cTanh(z: TComplex): TComplex; register; // z :--> Tanh(z) asm FLD TComplex.y [EAX] FADD ST, ST FLD TComplex.x [EAX] FADD ST, ST // 2x 2y FLDL2E FMUL FLD ST(0) FRNDINT FSUB ST(1), ST FXCH ST(1) F2XM1 FLD1 FADD FSCALE FSTP ST(1) // exp(2x) 2y FLD1 // 1 exp(2x) 2y FDIV ST(0),ST(1) // exp(-2x) exp(2x) 2y FLD1 FADD ST,ST // 2 exp(-2x) exp(2x) 2y FLD ST(0) // 2 2 exp(-2x) exp(2x) 2y FDIVP ST(2), ST(0) // 2 exp(-2x)/2 exp(2x) 2y FDIVP ST(2), ST(0) // exp(-2x)/2 exp(2x)/2 2y FLD ST(1) // exp(2x)/2 exp(-2x)/2 exp(2x)/2 2y FSUB ST(0), ST(1) // sinh(2x) exp(-2x)/2 exp(2x)/2 2y FXCH ST(2) // exp(2x)/2 exp(-2x)/2 sinh(2x) 2y FADD // cosh(2x) sinh(2x) 2y FXCH ST(2) // 2y sinh(2x) cosh(2x) FSINCOS // cos(2y) sin(2y) sinh(2x) cosh(2x) FADDP ST(3), ST(0) // sin(2y) sinh(2x) (cos+cosh) FDIV ST(0), ST(2) FSTP TComplex.y [EDX] // sinh(2x) (cos+cosh) FDIVR FSTP TComplex.x [EDX] end; //----------------------------------------------------------------------------// function cCotanh(z: TComplex): TComplex; register; // z :--> Cotanh(z) asm FLD TComplex.y [EAX] FADD ST, ST FLD TComplex.x [EAX] FADD ST, ST FLDL2E FMUL FLD ST(0) FRNDINT FSUB ST(1), ST FXCH ST(1) F2XM1 FLD1 FADD FSCALE FSTP ST(1) FLD1 FDIV ST(0), ST(1) FLD1 FADD ST,ST FLD ST(0) FDIVP ST(2), ST(0) FDIVP ST(2), ST(0) FLD ST(0) FSUB ST(0), ST(2) FXCH ST(2) FADD FXCH ST(2) FSINCOS FSUBRP ST(3), ST(0) FDIV ST(0), ST(2) FSTP TComplex.y [EDX] FDIVR FSTP TComplex.x [EDX] end; //----------------------------------------------------------------------------// //------ Other operations ----------------------------------------------------// //----------------------------------------------------------------------------// function Complex(x, y: TComplexType): TComplex; register; // Result.x:= x; Result.y:= y asm FLD x FSTP TComplex.x [EAX] FLD y FSTP TComplex.y [EAX] end; //----------------------------------------------------------------------------// function cEqual(z1, z2: TComplex): boolean; register; // z1 = z2 asm MOV ECX, EAX FLD TComplex.x [ECX] FLD TComplex.x [EDX] FCOMPP FSTSW AX SAHF JNZ @NOT FLD TComplex.y [ECX] FLD TComplex.y [EDX] FCOMPP FSTSW AX SAHF JNZ @NOT MOV AL, $01 ret @NOT: XOR AL, AL end; //----------------------------------------------------------------------------// function cEqualZero(z: TComplex): boolean; register; // z.x = 0 and z.y = 0 {begin Result:= (z.x = 0) and (z.y = 0) end;} asm MOV ECX, EAX FLD TComplex.x [ECX] FLDZ FCOMPP FSTSW AX SAHF JNZ @NOT FLD TComplex.y [ECX] FLDZ FCOMPP FSTSW AX SAHF JNZ @NOT MOV AL, $1 RET @NOT: XOR AL, AL end; //----------------------------------------------------------------------------// function cEqualOne(z: TComplex): boolean; register; // z.x = 1 and z.y = 0 {begin Result:= (z.x = 1) and(z.y = 0) end;} asm MOV ECX, EAX FLD TComplex.x [ECX] FLD1 FCOMPP FSTSW AX SAHF JNZ @NOT FLD TComplex.y [ECX] FLDZ FCOMPP FSTSW AX SAHF JNZ @NOT MOV AL, $01 ret @NOT: XOR AL, AL end; //----------------------------------------------------------------------------// //------ Other operations ----------------------------------------------------// //----------------------------------------------------------------------------// function ComplexToStr(z: TComplex): string; var x, y: TComplexType; begin if not cEqualZero(z) then begin Result := ''; x := Re(z); y := Im(z); if x <> 0 then Result := FloatToStr(x); if y <> 0 then begin if (y > 0) and (x <> 0) then Result := Result + '+'; Result := Result + FloatToStr(y) + 'i' end end else Result := '0' end; //----------------------------------------------------------------------------// function StrToComplex(S: string): TComplex; var i: integer; sr, si: string; begin if Length(S) <> 0 then if S[Length(S)] in ['i', 'I'] then begin i := Length(S) - 1; while (not (S[i] in ['+', '-'])) and (i > 1) do dec(i); if S[i - 1] in ['E', 'e'] then begin dec(i); while not (S[i] in ['+', '-']) do dec(i) end; sr := Copy(S, 1, i - 1); if sr = '' then sr := '0'; si := Copy(S, i, Length(S) - i); Result.x := StrToFloat(sr); Result.y := StrToFloat(si) end else begin Result.x := StrToFloat(S); Result.y := 0 end else Result := NullComplex; end; //----------------------------------------------------------------------------// function cmPow(z: TComplex; n: integer): TComplex; var x, y, r, f: TComplexType; begin x := Re(z); y := Im(z); r := Power(SQRT(SQR(x) + SQR(y)), n); if x > 0 then f := ArcTan(y / x) else if x < 0 then f := PI * ArcTan(y / x) else if y > 0 then f := PI / 2 else if y < 0 then f := -PI / 2; Result := Complex(r * COS(n * f), r * SIN(n * f)) end; //----------------------------------------------------------------------------// //----------------------------------------------------------------------------// //----------------------------------------------------------------------------// end. /// end of cmplx module /// Вау, это действительно много кода! Единица Некоторые наблюдения:
Некоторые потенциальные проблемы, которые я заметил:
В целом, это код выглядит как-solid реализация комплексных чисел на языке Паскаль, но может потребовать корректировки для работы правильно на различных платформах и с различными компиляторами. This is a Pascal code for a complex arithmetic library, which includes various functions for performing operations on complex numbers, such as addition, subtraction, multiplication, division, trigonometric and hyperbolic functions, and more. Here are som Комментарии и вопросыПолучайте свежие новости и обновления по Object Pascal, Delphi и Lazarus прямо в свой смартфон. Подпишитесь на наш Telegram-канал delphi_kansoftware и будьте в курсе последних тенденций в разработке под Linux, Windows, Android и iOS Материалы статей собраны из открытых источников, владелец сайта не претендует на авторство. Там где авторство установить не удалось, материал подаётся без имени автора. В случае если Вы считаете, что Ваши права нарушены, пожалуйста, свяжитесь с владельцем сайта. :: Главная :: Математика ::
|
||||
©KANSoftWare (разработка программного обеспечения, создание программ, создание интерактивных сайтов), 2007 |